
131

Original scientific paper

 MIDEM Society

Journal of Microelectronics,
Electronic Components and Materials
Vol. 43, No. 2(2013), 131 – 138

Transforming the LSTM training algorithm for
efficient FPGA-based adaptive control of
nonlinear dynamic systems
Rok Tavčar1, Jože Dedič1,2, Drago Bokal1,3, Andrej Žemva4

1Cosylab d.d., Control Systems Laboratory, Ljubljana, Slovenia
2CO BIK, Solkan, Slovenia
3University of Maribor, Faculty of Natural Sciences and Mathematics
4University of Ljubljana, Faculty of electrical engineering and CO Namaste,
Ljubljana, Slovenia

Abstract: In the absence of high-fidelity analytical descriptions of a given system to be modeled, designers of model-driven control
systems rely on empirical nonlinear modeling methods such as neural networks. The particularly challenging task of modeling time-
varying nonlinear dynamic systems requires from the modeling technique to capture complex internal system dynamics, dependent
of long input histories. Traditional recurrent neural networks (RNNs) can in principle satisfy these demands, but have limitations on
retaining long-term input data. Long Short-Term Memory (LSTM) neural networks overcome these limitations.
In applications with strict requirements imposed on the size, power consumption and speed, embedded implementations of control
systems based on Field Programmable Gate Array (FPGA) technology are required. However, as neural networks are traditionally a
software discipline, direct ports of neural networks and their learning algorithms into hardware give disappointing, often impractical
results. To enable efficient hardware implementation of LSTM with on-chip learning, we present a transformation strategy which leads
to replacing original LSTM learning algorithm with Simultaneous Perturbation Stochastic Approximation (SPSA). Our experimental
results on a protein sequence classification benchmark confirm the efficacy of the presented learning scheme. The use of this scheme
streamlines the architecture of on-chip learning phase substantially and enables efficient implementation of both forward phase and
learning phase in FPGA based hardware.

Key words: model predictive control, control of nonlinear dynamic systems, recurrent neural networks, hardware neural networks,
FPGA, LSTM, SPSA

Prilagoditev učenja nevronskih mrež LSTM za
učinkovito realizacijo adaptivne regulacije
nelinearnih dinamičnih sistemov v vezjih FPGA
Povzetek: V primerih kjer podroben analitični opis modela ni na voljo, snovalci modelno naravnanih regulacijskih sistemov potrebujejo
empirične nelinearne metode modeliranja kot so umetne nevronske mreže. Modeliranje časovno spremenljivih, nelinearnih dinamičnih
sistemov zahteva sposobnost posnemanja zapletene notranje dinamike procesa, pri čemer so izhodi modela odvisni od zgodovine
vhodnih podatkov, raztezajoče se prek dolgih časovnih intervalov. Tradicionalne rekurentne nevronske mreže (ang. recurrent neural
nework) v principu zadostijo tem zahtevam, ampak imajo omejitve pri pomnenju vhodov preko dolgih zakasnitev. Posebej z namenom
premagati te omejitve so bile zasnovane mreže z dolgim kratkoročnim spominom (ang. Long Short-Term Memory, LSTM).
Mnoge aplikacije, ki imajo stroge zahteve po velikosti, hitrosti in porabi energije, zahtevajo namensko strojno izvedbo regulacijskega
algoritma v polju programirljivih logičnih vrat (ang. Field Programmable Gate Array, FPGA). Ker so nevronske mreže tradicionalno
disciplina splošnonamenske programske opreme, neposredna preslikava nevronskih mrež in njihovega algoritma za učenje v strojno
opremo običajno prinese nepraktičen rezultat z zmogljivostmi pod pričakovanji. Z namenom učinkovite realizacije mrež LSTM z
učenjem v strojni opremi, v tem delu predstavljamo prilagoditveno strategijo, ki motivira zamenjavo izvirnega učnega algoritma z
algoritmom Simultaneous Perturbation Stochastic Approximation (SPSA). Učinkovitost delovanja mrež LSTM, učenih z SPSA, potrdimo
s poskusi na znanem učnem problemu klasifikacije beljakovin. Nova kombinacija arhitekture nevronske mreže ter algoritma za učenje
omogoča izjemne poenostavitve pri izvedbi tako testne faze kot učne faze v namenski strojni opremi, osnovani na tehnologiji FPGA.

Ključne besede: prediktivno vodenje, vodenje nelinearnih dinamičnih sistemov, rekurentne nevronske mreže, nevronske mreže v
strojni opremi, FPGA, LSTM, SPSA

* Corresponding Author’s e-mail: rok.tavcar@cosylab.com

132

1 Introduction

Control of complex nonlinear dynamical systems de-
mands advanced control methods such as Model Pre-
dictive Control (MPC). MPC is particularly challenging
in the absence of a high-fidelity analytical description
of the modeled system, a frequent reality in control of
real-world systems. In such cases, designers must rely
on empirical nonlinear modeling methods such as neu-
ral networks (NN) [1]. Neural-network-based modeling
also plays an important role in control of time-varying
systems, where NN learning is used to adapt to system-
parameter changes over time [2]. Typical MPC tasks
demand the model to capture complex internal system
dynamics, dependent on long input histories. The type
of neural networks that can satisfy these demands are
Recurrent Neural Networks (RNNs) [3]. Because of their
enhanced prediction qualities, they have been applied
to numerous dynamic system control applications in-
cluding speech recognition, phoneme recognition and
chemical process identification [4]. However, tradition-
al RNN models have limitations on retaining long-term
input data. Long Short-Term Memory (LSTM) neural
networks have been designed particularly to overcome
these limitations by introducing architectural concepts
which prevent exponential decay of input information
over extended sequence lengths [5]. These concepts
enable LSTM networks to learn patterns in sequences
longer than 1000 steps, a 2 orders of magnitude im-
provement over traditional RNNs [6]. Figure 1 shows a
basic unit of an LSTM network called a memory block.

It comprises several neuron-like components (a memory
cell ‘guarded’ by gating units; input, output and forget
gates), each with its own set of in- and outcoming weight-
ed connections and a nonlinear activation function.

In control applications with strict requirements im-
posed on size, power consumption and speed, com-
pact implementations of control systems in dedicated
hardware are required. Due to the ceaselessly increas-
ing density of Field Programmable Gate Arrays (FPGAs),
along with their high degree of flexibility, they have
become the technology of choice in a wide range of
control applications [8]. However, NNs being tradition-
ally a software discipline, direct ports of themselves
and their learning algorithms into hardware give dis-
appointing, often impractical results. Thus, algorithmic
and architectural transformation techniques are crucial
when porting neural networks into hardware [9].

In this work, we aim towards hardware-friendly imple-
mentation of LSTM with on-chip learning. This paper
presents a strategy by which LSTM training is trans-
formed and adapted in a way that reduces overall ar-
chitectural complexity and allows hardware implemen-
tation with explicit exploitation of parallelism, avoiding
mechanisms requiring complex circuitry.

Moreover, our proposed implementation strategy ena-
bles an independent architectural design of network
forward phase and learning phase, leaving wide design
freedom in choosing the implementation approach for
each phase.

The validity of our approach is confirmed by experiments
presented in this paper, showing that our proposed ap-
proach, i.e. learning of LSTM with Simultaneous Pertur-
bation Stochastic Approximation (LSTM-SPSA), retains
the ability of LSTM to learn sequences in data whilst de-
livering immense architectural benefits in terms of suit-
ability for hardware implementation.

The paper is organized as follows. The rest of Chapter 1
briefs our mission statement and reviews related work.
Chapter 2 explains the proposed transformation strat-
egy and motivates the search of an alternative algo-
rithm for LSTM learning. This search is laid out in Chap-
ter 3, which also explains the chosen algorithm and
emphasizes the advantages and drawbacks of the new
learning scheme. Chapter 4 explains and discusses our
experiments and results. Chapter 5 provides the con-
clusion and guidelines for future work.

1.1 Mission statement

In this work, we make the first attempt to transform
LSTM and its learning rule to enable their efficient im-

R. Tavčar et al; Informacije Midem, Vol. 43, No. 2(2013), 131 – 138

Figure 1: LSTM Memory Block: the memory cell with its
constant error carousel (CEC) retains data over long in-
put sequences. The update, output and erasure of this
data are controlled by input, output and forget gates,
respectively. Image source: [7].

133

plementation in dedicated hardware. At the time of
writing, no account on research aiming at a hardware-
native implementation of LSTM and its learning rule
has yet been published.

We seek for the optimal strategy for efficient hardware
implementation of both LSTM forward pass and on-
chip learning.

We stress the importance of early architectural trans-
formations upon porting software algorithms into ded-
icated hardware. We are led by the idea that an early,
educated algorithm transformation will yield superior
gains compared to a low-level, partial optimization of
a design based on concepts unfit for dedicated hard-
ware.

Investing effort to review alternative implementation
options is crucial ground work that enables early archi-
tectural decisions that maximize future design fitness.

1.2 Related work

In the last two decades, extensive experimental and
theoretical research effort has been aimed towards
optimal hardware realization of different NN types and
learning algorithms [9,10,11,12].

Systolic arrays [13, ch.5], [14] and stream processing ar-
chitectures [15] minimize hardware idle-time and opti-
mize dataflow and hardware efficiency. However, these
approaches put strong constraints on the kind of neural
architectures they can be applied to [13]. Logarithmic
multipliers [16,17] spare hardware resources needed
to implement expensive multipliers. Such optimization
techniques gain priority when the benefits of higher-
level algorithmic transformations have already been
exploited. Limiting network weight levels to powers
of two [18] replaces multipliers altogether with bitwise
shifts. However, typical neural networks do not allow
such modifications without significant performance
loss. Cellular neural networks [19] and RAM-based NNs
[9] are specifically designed with efficient hardware im-
plementation in mind. However, their implementation
principles (and their learning algorithms, also typically
suitable for hardware) cannot be arbitrarily transferred
to other network architectures, rendering these imple-
mentation principles unsuitable for applications re-
quiring specific architectures. Perturbation algorithms
and local learning algorithms [9] generalize well to dif-
ferent network architectures, and are well-suitable for
hardware implementations. Perturbation algorithms
do not put any assumptions on the neural network ar-
chitecture, which is particularly beneficial when they
are applied to architecturally complex neural networks
such as LSTM.

Specifically for LSTM networks, no development on
their architecture or their learning algorithm has yet
been aimed at improving their suitability for hardware
implementation. Improvements of LSTM are mainly
focused towards improving their learning capac-
ity [20,21] or convergence [22]. Research has yet to be
made towards making LSTM networks and their learn-
ing suitable for dedicated hardware.

2 Criteria for selecting the
transformation approach

In our search for conceptual transformations to LSTM
and its learning on the algorithmic level, alternatives
that bring the following benefits are sought for:
· decoupling the implementation of forward and

backward pass to reduce implementation com-
plexity, possibly without doubling the necessary
hardware resources

· lowering the amount of expensive arithmetic op-
erations

· lowering the complexity of control circuitry
· lowering the data dependencies between differ-

ent algorithm parts (improving spatial locality)

To keep complexity of the hardware implementation
at minimum, the implementation of on-chip learning
should affect the implementation of the network’s for-
ward phase as little as possible. Ideally, the two phases
should be completely decoupled, the only link between
them being the data they both need in their operations
(e.g. they both access the same memory storing net-
work weights). In such case, the design of each phase
can be treated separately, giving the designer more
flexibility when choosing design approaches for either
of them. However, being based on backpropagation,
the LSTM backward pass is in the same order of archi-
tectural complexity as the forward pass, thus complete
separation of the two phases could mean doubling the
amount of required hardware resources. This motivates
an architectural design where parts of the hardware are
used by both phases; but that complicates the imple-
mentation process significantly compared to the case
where each phase is treated independently. Conse-
quently, we seek high-level transformations that allow
the design of backward pass independently from the
forward pass without a significant increase of the over-
all required hardware resources.

As the first step, we systematically analyze the findings
of our literature search laid out in the previous chapter
with respect to our criteria. As LSTM’s advanced learn-
ing abilities stem from its architectural composition, we
leave the neural network topology intact and focus on

R. Tavčar et al; Informacije Midem, Vol. 43, No. 2(2013), 131 – 138

134

augmenting the LSTM learning rule. We isolate hard-
ware-friendly learning algorithms that generalize well
to different neural network topologies and satisfy our
criteria in several points. In subsequent steps of our re-
search, these algorithms are analyzed in further depth.

3 Selecting the alternative training
algorithm for LSTM

There are in principle two classes of hardware-friendly
training algorithms: a) variations of widely-used but
complex training algorithms with some of their core
mechanisms altered or replaced and b) training al-
gorithms that apply to hardware-friendly network ar-
chitectures and are thus, in concept, fit for hardware
themselves [11].

Because LSTM networks are a traditional multilayer net-
work architecture and original LSTM training is based
on backpropagation, it is best to look for algorithms
close to its principles, focusing thus on the first class of
learning algorithms. Their most successful representa-
tives rely on some variety of parameter perturbation.

The general idea of perturbation algorithms is to ob-
tain a direct estimate of the gradients by a slight ran-
dom perturbation of network parameters, using the
forward pass to measure the resulting network error.
These on-chip training techniques do not only elimi-
nate the complex backward pass but are also likely to
be more robust to non-idealities occurring in hardware,
such as a lowered numerical precision [9]. Mainly two
variations exist: node perturbation and weight pertur-
bation. Examples of node perturbation algorithms are
Madaline-3 and Madaline-2.

We choose weight perturbation algorithms because of
the lower complexity of their addressing and routing
circuitry compared to node perturbation algorithms.
Specifically, we look into two fully parallel versions of
weight perturbation algorithms, namely Simultaneous
Perturbation Stochastic Approximation (SPSA) [23] and
Alopex [24]. Both are local training algorithms which
determine weight updates using only locally available
information and a global error signal. Both algorithms
are closely related, but unlike SPSA, Alopex relies on
the principles of simulated annealing, which adds com-
plexity to the calculation of each weight perturbation.

In contrast, SPSA uses a simple random distribution
function to perform weight perturbations and then
updates all weights using the same absolute value
of the update. Neither algorithm makes any assump-
tions as to the neural network topology, thus both are

conceptually fit for direct generalization to LSTM net-
work architecture. Neither have yet been applied to
the LSTM architecture, but have been demonstrated
to successfully train simpler FFNNs and RNNs [24, 25,
26], which motivates us to research their applicability
for LSTM training. Because SPSA uses less parameters
and computational steps to determine the update of
each weight than Alopex, ultimately allowing a more
streamlined hardware description, SPSA was selected
as the algorithm of choice in this study.

3.1 LSTM-SPSA: LSTM trained by Simultaneous
Perturbation Stochastic Approximation

SPSA [23] is based on a low-complexity, highly efficient
gradient approximation that relies on measurements
of the objective function, not on the gradient itself.
The gradient approximation is based on only two func-
tion measurements, regardless of the dimension of the
gradient vector, which is especially important in the
field of neural networks, where this dimension quickly
reaches several thousands. The weight-update scheme
of the SPSA learning algorithm is explained by the fol-
lowing equations:

i
t

ttti
t cs

wJcswJ
w

)()(−+
=∆ (1)

otherwise
wwawif
wwawif

waw
w
w

w i
t

i
t

i
t

i
t

i
t

i
t

i
t max

max

max

max

1)(
)(

,
,
,

−<∆−
>∆−

∆−
−=∆ + (2)

Here tw∆ and i
tw∆ denote the weight vector of a net-

work and its i-th element at the t-th iteration, respec-
tively, α is a positive constant and c is the magnitude
of the perturbation. iw∆ represents the i-th element
of the modifying vector.Wmax is the maximum value of
a weight. ts and i

ts denote a sign vector and its i-th
element that is 1 or -1. The sign of i

ts is determined
randomly, with adherence to one of the recommended
variable distributions. J(wt) denotes the criterion func-
tion, which is most frequently the Mean Square Error
(MSE) between the network’s actual and desired out-
put.

From Eqs. 1 and 2 we see that a) during weight update,
the same absolute value is used to update all network
weights and b) to compute this value, only two meas-
urements of the error function are required, one ob-
tained via forward pass with perturbed weights and
one without perturbations. SPSA algorithm flowchart
is shown in Figure 2.

R. Tavčar et al; Informacije Midem, Vol. 43, No. 2(2013), 131 – 138

135

Figure 2: Flowchart of Simultaneous Perturbation Sto-
chastic Approximation applied to Recurrent Neural
Network Learning. Image source: [26].

The first advantage of SPSA over the original LSTM
learning algorithm is simplification of the gradient esti-
mation, because of the substantial reduction the num-
ber of arithmetical operations needed for weight up-
dates. The second advantage, less obvious but equally
important, is SPSA’s equal treatment of all weights,
eliminating in this way the separate error backpropa-
gation paths (with different arithmetic expressions) re-
quired by different LSTM weight types, simplifying the
algorithm routing circuitry significantly.

This second advantage in simplicity could prove to be
a disadvantage in learning performance. For example,
error backpropagation paths (set of weighted connec-
tions) that lead into forget gates, could have entirely
different update dynamics than those leading into in-
put gates. In original LSTM learning, this is accounted
for; but not in SPSA. It is thus expected that SPSA algo-
rithm will take longer to converge than original LSTM
learning rule, but the increased simplicity of hardware
implementation could compensate this by increasing
operation speeds and possibilities of parallelization. An
added benefit is also a simpler, more easily maintain-
able hardware description code.

3.2 Improving Learning Performance of LSTM-SPSA

After initial experiments with LSTM-SPSA (on the
benchmark presented in the following chapter), possi-
ble augmentations to the learning algorithm were ex-

plored to maximize learning performance. The under-
lying idea of our augmentation was that if presented
with a more difficult task, the algorithm will also im-
prove on its basic task (minimize mean square error).
For classification tasks such as ours, receiver operating
characteristics curves (ROC) are better discriminative
measures of classification performance than MSE [28].
Furthermore, the classification performance is in our
experiments measured by AUC and AUC50 (area under
ROC and ROC50 curve, respectively, presented briefly
in the next chapter), [6], motivating the idea that the
algorithm should also aim to maximize these scores.

To challenge our learning algorithm with a more diffi-
cult optimization task, we extended the criterion func-
tion by adding the AUC and AUC50 score, getting two
new criterion functions. In addition to bringing MSE
towards zero, the algorithm thus also had to maximize
(bring to value of 1) AUC or AUC50. The two enhanced
criterion functions used were:

)1(*)(AUCyMSEwJ tAUC −+= and

)501(*)(50 AUCyMSEwJ tAUC −+=

using y as a scaling factor to tune the ratio between the
MSE and AUC (or AUC50) in the score.

Because the AUC score can only be calculated at the
end of a learning epoch, we needed to implement
batch learning, applying cumulative weight updates at
each learning epoch end. When using batch learning
with the original criterion function, the performance
of the learning algorithm did not change significant-
ly compared to online learning. When adding ROC or
ROC50 momentum to the criterion function, learning
improved only by a few %, not reaching statistical sig-
nificance.

4 Experimental results

Replacing the learning algorithm considerably inter-
feres with the neural network’s native learning scheme.
Thus, before actual hardware implementation, the ef-
fectiveness of SPSA in training of LSTM has to be ex-
perimentally verified.

The most significant property of LSTM networks is their
ability to retain temporal information in sequential in-
put data. Therefore, we must test the LSTM-SPSA com-
bination on a learning task that demands this ability.
To allow for a back-to-back comparison with the origi-
nal implementation, our experiments were based on
those described in [6]. We implemented SPSA learn-
ing for LSTM networks and applied LSTM-SPSA to the

R. Tavčar et al; Informacije Midem, Vol. 43, No. 2(2013), 131 – 138

136

SCOP 1.53 database, which is a standard, widely used
sequence-classification benchmark.

The preliminary experiments on a single SCOP 1.53
dataset, described in [27], showed promising learning
results, indicating that SPSA-trained LSTM networks
are able to learn temporal information over extended
lengths of sequences.

For the main experiment, run on the complete SCOP
1.53 benchmark, we used pure SPSA with the original
criterion function on an LSTM NN architecture identi-
cal to the one described in [6]. We used online learn-
ing, meaning that weight updates were computed
and applied at the end of each sequence presented
to the network within a learning epoch. In the experi-
ment, the two SPSA learning parameters values used

were c=0.0015 and

32
c

a = . In the generation of SPSA

perturbation matrix, a Bernoulli distribution was used,
as one of the recommended, optimal distributions for
SPSA perturbations [29].

Table 1 shows the performance of different algorithms
applied to SCOP 1.53 benchmark, showing that LSTM
NNs outperform traditional algorithms for protein se-
quence classification in terms of classification quality,
speed or both [6]. The quality of a ranking of test set ex-
amples for each protein family is evaluated by the area
under the ROC curve. Being a more discriminiative qual-
ity measure, the area under ROC50 is also used; this is the
area under the ROC curve up to 50 false positives, essen-
tially rescaling the false positive rate of the ROC curve [6].
ROC and ROC50 scores for LSTM-SPSA show competitive
learning performance of LSTM-SPSA towards other pro-
tein sequence classification algorithms. Because the for-
ward phases of LSTM and LSTM-SPSA are identical, their
test times, (Table 1, column 3) when run on software,
are equal. Results in the table confirm that after replac-
ing the original LSTM learning algorithm with SPSA, the
learning ability of the LSTM NN architecture is preserved
to a high degree. Because of the computational and ar-
chitectural advantages of SPSA, explained in chapter 3,
this motivates the use of LSTM-SPSA in hardware imple-
mentations of solutions that require the unique learning
abilities of LSTM NN architecture.

Table 1: Results of remote homology detection on the
SCOP benchmark database. The second and third col-
umn report the average area under the receiver operat-
ing curve (‘ROC’) and the same value for maximally 50
false positives (‘ROC50’). The fourth column reports the
time required to classify 20 000 test protein sequenc-
es (equivalent to one genome) into one superfamily.
Performance data for solutions other than LSTM-SPSA
sourced from [6].

Method ROC ROC50 Time
PSI-BLAST 0.693 0.264 5.5 s
FPS 0.596 - 6800 s
SAM-T98 0.674 0.374 200 s
Fisher 0.887 0.250 > 200 s
Mismatch 0.872 0.400 380 s
Pairwise 0.896 0.464 > 700 s
SW 0.916 0.585 > 470 s
LA 0.923 0.661 550 h
Oligomer 0.919 0.508 2000 s
HMMSTR - 0.640 > 500 h
Mismatch-PSSM 0.980 0.794 > 500 h
SW-PSSM 0.982 0.904 > 620 h
LSTM 0.932 0.652 20 s
LSTM-SPSA 0.900 0.392 20 s

Figure 3 and Figure 4 show the total number of families
for which a given algorithm exceeds a ROC or ROC50
threshold, respectively. Because of the rescaling of false
positives in ROC50 score, giving it a higher discrimina-
tive value, the difference in performance between
LSTM and LSTM-SPSA is more evident in Figure 4.

Figure 3: Comparison of homology detection methods
for the SCOP 1.53 benchmark dataset. The total num-
ber of families for which a given method exceeds a ROC
threshold is plotted. Performance data for solutions
other than LSTM-SPSA sourced from [6].

Performance figures show that LSTM-SPSA exhibits
competitive results compared to other protein classifi-
cation techniques and compares to the original learn-
ing algorithm. This confirms that LSTM-SPSA retains
the ability of LSTM networks to learn long sequences
in data and, due to its substantial architectural advan-
tages, that it is a viable scheme for implementing LSTM
network abilities in dedicated hardware.

5 Conclusion

The work presented in this paper is the first attempt in
transforming LSTM and its learning rule with the aim of

R. Tavčar et al; Informacije Midem, Vol. 43, No. 2(2013), 131 – 138

137

improving its suitability for hardware implementation.
Our transformation strategy is based on the premise
that most gains can be achieved by high-level transfor-
mations of the algorithm on a conceptual level, which
can mean completely replacing its vital parts with alter-
natives known to be suitable for hardware.

In our particular case, we have refrained from a naive
direct port of a LSTM learning algorithm from software
to hardware platform, bound to give disappointing
results. Instead, we have replaced LSTM’s backpropa-
gation-based learning algorithm with Simultaneous
Perturbation Stochastic Approximation, which fits our
criteria for suitability for hardware implementation.

Our experiments confirm that LSTM-SPSA retains its
ability to learn patterns in sequential data, which is
the main characteristic of the LSTM network architec-
ture. Due to promising results on a classification task,
we expect that LSTM-SPSA could also demonstrate
regression abilities. Our results show that LSTM-SPSA
yields competitive results to the original learning algo-
rithm, while enabling a cleaner implementation, lower
resource utilization, simpler logical circuitry and in-
creased parallelization of LSTM with on-chip learning.

Our strategy yields a solution which enables the de-
signer to treat the forward phase and learning phase
circuitry separately and to seek implementation strat-
egies for each independently, giving a broader set of
possibilities. Moreover, as SPSA is significantly less com-
plex than the original algorithm, this decoupling does
not bring a large increase of FPGA fabric consumption.

We conclude that because of the ability of SPSA in
training LSTM on sequential data and because of its
substantial advantages in suitability for hardware im-

plementation, LSTM-SPSA is the recommended ap-
proach for dedicated hardware implementations of
LSTM networks with on-chip learning.

In our future work, the effects of precision loss due
to fixed-point arithmetic used in hardware will be
studied. Preliminary experiments show that different
fixed-point scaling should be used for different parts
of the NN. Regression abilities of LSTM-SPSA will be
explored. An attempt will be made to improve LSTM-
SPSA learning either by using a modified SPSA which
uses smoothed gradient or by using an adaptive learn-
ing rate. Independently from the learning phase, trans-
formation techniques for LSTM forward phase will be
reviewed.

Acknowledgements

Our research is in part funded by the European Union,
European Social Fund. CO BIK, the Centre of Excellence
for Biosensors, Instrumentation and Process Control
and CO Namaste, Institute for research and develop-
ment of Advanced Materials and Technologies for the
Future, are operations funded by the European Union,
European Regional Development Fund and Republic
of Slovenia, Ministry of Education, Science, Culture and
Sport.

References

1 T. Hayakawa, W. M. Haddad and N. Hovakimyan,
“Neural network adaptive control for a class of
nonlinear uncertain dynamical systems with as-
ymptotic stability guarantees”, Neural Networks,
IEEE Transactions on, vol.19, no.1, pp. 80-89 2008.

2 H. Chaoui, P. Sicard and W. Gueaieb, “Ann-based
adaptive control of robotic manipulators with
friction and joint elasticity”, Industrial Electronics,
IEEE Transactions on, vol.56, no.8, pp. 3174-3187
2009.

3 R. K. Al Seyab and Y. Cao, “Nonlinear system iden-
tification for predictive control using continuous
time recurrent neural networks and automatic
differentiation”, Journal of Process Control, vol.18,
no.6, pp. 568-581 2008.

4 P. A. Mastorocostas and J. B. Theocharis, “A recur-
rent fuzzy-neural model for dynamic system iden-
tification”, Systems, Man, and Cybernetics, Part B:
Cybernetics, IEEE Transactions on, vol.32, no.2, pp.
176-190 2002.

5 S. Hochreiter and J. Schmidhuber, “Long short-
term memory”, Neural Computation, vol.9, no.8,
pp. 1735-1780, 1997/11/01 1997.

R. Tavčar et al; Informacije Midem, Vol. 43, No. 2(2013), 131 – 138

Figure 4: Comparison of homology detection methods
for the SCOP 1.53 benchmark dataset. The total num-
ber of families for which a given method exceeds a
ROC50 threshold is plotted. Performance data for solu-
tions other than LSTM-SPSA sourced from [6].

138

6 S. Hochreiter, M. Heusel and K. Obermayer, “Fast
model-based protein homology detection with-
out alignment”, Bioinformatics, vol.23, no.14, pp.
1728-1736, July 15, 2007 2007.

7 A. Graves and J. Schmidhuber, “Framewise pho-
neme classification with bidirectional lstm and
other neural network architectures”, Neural Net-
works, vol.18, no.5-6, pp. 602-610 2005.

8 E. Monmasson, L. Idkhajine, M. N. Cirstea, I. Bahri,
A. Tisan and M. W. Naouar, “Fpgas in industrial
control applications”, Industrial Informatics, IEEE
Transactions on, vol.7, no.2, pp. 224-243 2011.

9 P. Moerland and E. Fiesler, “Neural network adap-
tations to hardware implementations”, in Hand-
book of Neural Computation, 1997.

10 D. G. Bailey, “Invited paper: Adapting algorithms
for hardware implementation”, in Computer Vision
and Pattern Recognition Workshops (CVPRW),
2011 IEEE Computer Society Conference on, pp.
177-184, 2011.

11 P. Moerland and E. Fiesler, “Hardware-friendly
learning algorithms for neural networks: An over-
view”, in Proceedings of the Fifth International
Conference on Microelectronics for Neural Net-
works and Fuzzy Systems: MicroNeuro’96, IEEE
Computer Society Press, Lausanne, Switzerland,
1996.

12 J. Misra and I. Saha, “Artificial neural networks in
hardware: A survey of two decades of progress”,
Neurocomputing, vol.74, no.1-3, pp. 239-255
2010.

13 A. Omondi and J. C. Rajapakse, Fpga implemen-
tations of neural networks, Springer Netherlands,
2006.

14 R. G. Gironés, R. C. Palero, J. C. Boluda and A. S.
Cortés, “Fpga implementation of a pipelined on-
-line backpropagation”, The Journal of VLSI Signal
Processing, vol.40, no.2, pp. 189-213 2005.

15 C. Farabet, C. Poulet and Y. LeCun, “An fpga-based
stream processor for embedded real-time vision
with convolutional networks”, in Computer Vision
Workshops (ICCV Workshops), 2009 IEEE 12th In-
ternational Conference on, pp. 878-885, 2009.

16 U. Lotrič and P. Bulić, “Logarithmic multiplier in
hardware implementation of neural networks”,
Adaptive and Natural Computing Algorithms, pp.
158-168 2011.

17 U. Lotrič and P. Bulić, “Applicability of approximate
multipliers in hardware neural networks”, Neuro-
computing, vol.96, no.0, pp. 57-65 2012.

18 M. Marchesi, G. Orlandi, F. Piazza and A. Uncini,
“Fast neural networks without multipliers”, Neural
Networks, IEEE Transactions on, vol.4, no.1, pp. 53-
62 1993.

19 L. Fortuna, P. Arena, D. Balya and A. Zarandy, “Cel-
lular neural networks: A paradigm for nonlinear

spatio-temporal processing”, Circuits and Systems
Magazine, IEEE, vol.1, no.4, pp. 6-21 2001.

20 F. A. Gers, J. Schmidhuber and F. Cummins, “Le-
arning to forget: Continual prediction with lstm”,
Neural Computation, vol.12, no.10, pp. 2451-
2471, 2000/10/01 2000.

21 F. A. Gers, N. N. Schraudolph and J. Schmidhuber,
“Learning precise timing with lstm recurrent ne-
tworks”, Journal of Machine Learning Research,
vol.3, pp. 115-143 2002.

22 J. Schmidhuber, D. Wierstra, M. Gagliolo and F. Go-
mez, “Training recurrent networks by evolino”, Ne-
ural Computation, vol.19, no.3, pp. 757-779 2007.

23 J. C. Spall, “Implementation of the simultaneous
perturbation algorithm for stochastic optimizati-
on”, Aerospace and Electronic Systems, IEEE Tran-
sactions on, vol.34, no.3, pp. 817-823 1998.

24 K. Unnikrishnan and K. Venugopal, “Alopex: A
correlation-based learning algorithm for feed-
forward and recurrent neural networks”, Neural
Computation, vol.6, no.3, pp. 469-490 1994.

25 Y. Maeda and R. J. P. De Figueiredo, “Learning rules
for neuro-controller via simultaneous perturbati-
on”, Neural Networks, IEEE Transactions on, vol.8,
no.5, pp. 1119-1130 1997.

26 Y. Maeda and M. Wakamura, “Simultaneous per-
turbation learning rule for recurrent neural ne-
tworks and its fpga implementation”, Neural
Networks, IEEE Transactions on, vol.16, no.6, pp.
1664-1672 2005.

27 R. Tavčar, “Design of neural networks for dedica-
ted hardware implementation”, in Proceedings of
Microelectronics, Devices and Materials (MIDEM),
International Conference on, MIDEM, 2012, Oto-
čec, Slovenia, 2012.

28 J. Huang and C. X. Ling, “Using auc and accura-
cy in evaluating learning algorithms”, Knowled-
ge and Data Engineering, IEEE Transactions on,
vol.17, no.3, pp. 299-310 2005.

29 P. Sadegh and J. C. Spall, “Optimal random per-
turbations for stochastic approximation using a
simultaneous perturbation gradient approxima-
tion”, Automatic Control, IEEE Transactions on,
vol.43, no.10, pp. 1480-1484 1998.

Arrived: 07. 03. 2013
Accepted: 15. 05. 2013

R. Tavčar et al; Informacije Midem, Vol. 43, No. 2(2013), 131 – 138

