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Abstract: In the absence of high-fidelity analytical descriptions of a given system to be modeled, designers of model-driven control 
systems rely on empirical nonlinear modeling methods such as neural networks. The particularly challenging task of modeling time-
varying nonlinear dynamic systems requires from the modeling technique to capture complex internal system dynamics, dependent 
of long input histories. Traditional recurrent neural networks (RNNs) can in principle satisfy these demands, but have limitations on 
retaining long-term input data. Long Short-Term Memory (LSTM) neural networks overcome these limitations. 
In applications with strict requirements imposed on the size, power consumption and speed, embedded implementations of control 
systems based on Field Programmable Gate Array (FPGA) technology are required. However, as neural networks are traditionally a 
software discipline, direct ports of neural networks and their learning algorithms into hardware give disappointing, often impractical 
results. To enable efficient hardware implementation of LSTM with on-chip learning, we present a transformation strategy which leads 
to replacing original LSTM learning algorithm with Simultaneous Perturbation Stochastic Approximation (SPSA). Our experimental 
results on a protein sequence classification benchmark confirm the efficacy of the presented learning scheme. The use of this scheme 
streamlines the architecture of on-chip learning phase substantially and enables efficient implementation of both forward phase and 
learning phase in FPGA based hardware.

Key words: model predictive control, control of nonlinear dynamic systems, recurrent neural networks, hardware neural networks, 
FPGA, LSTM, SPSA

Prilagoditev učenja nevronskih mrež LSTM za 
učinkovito realizacijo adaptivne regulacije  
nelinearnih dinamičnih sistemov v vezjih FPGA
Povzetek: V primerih kjer podroben analitični opis modela ni na voljo, snovalci modelno naravnanih regulacijskih sistemov potrebujejo 
empirične nelinearne metode modeliranja kot so umetne nevronske mreže. Modeliranje časovno spremenljivih, nelinearnih dinamičnih 
sistemov zahteva sposobnost posnemanja zapletene notranje dinamike procesa, pri čemer so izhodi modela odvisni od zgodovine 
vhodnih podatkov, raztezajoče se prek dolgih časovnih intervalov. Tradicionalne rekurentne nevronske mreže (ang. recurrent neural 
nework) v principu zadostijo tem zahtevam, ampak imajo omejitve pri pomnenju vhodov preko dolgih zakasnitev. Posebej z namenom 
premagati te omejitve so bile zasnovane mreže z dolgim kratkoročnim spominom (ang. Long Short-Term Memory, LSTM). 
Mnoge aplikacije, ki imajo stroge zahteve po velikosti, hitrosti in porabi energije, zahtevajo namensko strojno izvedbo regulacijskega 
algoritma v polju programirljivih logičnih vrat (ang. Field Programmable Gate Array, FPGA). Ker so nevronske mreže tradicionalno 
disciplina splošnonamenske programske opreme, neposredna preslikava nevronskih mrež in njihovega algoritma za učenje v strojno 
opremo običajno prinese nepraktičen rezultat z zmogljivostmi pod pričakovanji. Z namenom učinkovite realizacije mrež LSTM z 
učenjem v strojni opremi, v tem delu predstavljamo prilagoditveno strategijo, ki motivira zamenjavo izvirnega učnega algoritma z 
algoritmom Simultaneous Perturbation Stochastic Approximation (SPSA). Učinkovitost delovanja mrež LSTM, učenih z SPSA, potrdimo 
s poskusi na znanem učnem problemu klasifikacije beljakovin. Nova kombinacija arhitekture nevronske mreže ter algoritma za učenje 
omogoča izjemne poenostavitve pri izvedbi tako testne faze kot učne faze v namenski strojni opremi, osnovani na tehnologiji FPGA.

Ključne besede: prediktivno vodenje, vodenje nelinearnih dinamičnih sistemov, rekurentne nevronske mreže, nevronske mreže v 
strojni opremi, FPGA, LSTM, SPSA
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1 Introduction

Control of complex nonlinear dynamical systems de-
mands advanced control methods such as Model Pre-
dictive Control (MPC). MPC is particularly challenging 
in the absence of a high-fidelity analytical description 
of the modeled system, a frequent reality in control of 
real-world systems. In such cases, designers must rely 
on empirical nonlinear modeling methods such as neu-
ral networks (NN) [1]. Neural-network-based modeling 
also plays an important role in control of time-varying 
systems, where NN learning is used to adapt to system-
parameter changes over time [2]. Typical MPC tasks 
demand the model to capture complex internal system 
dynamics, dependent on long input histories. The type 
of neural networks that can satisfy these demands are 
Recurrent Neural Networks (RNNs) [3]. Because of their 
enhanced prediction qualities, they have been applied 
to numerous dynamic system control applications in-
cluding speech recognition, phoneme recognition and 
chemical process identification [4]. However, tradition-
al RNN models have limitations on retaining long-term 
input data. Long Short-Term Memory (LSTM) neural 
networks have been designed particularly to overcome 
these limitations by introducing architectural concepts 
which prevent exponential decay of input information 
over extended sequence lengths [5]. These concepts 
enable LSTM networks to learn patterns in sequences 
longer than 1000 steps, a 2 orders of magnitude im-
provement over traditional RNNs [6]. Figure 1 shows a 
basic unit of an LSTM network called a memory block. 

It comprises several neuron-like components (a memory 
cell ‘guarded’ by gating units; input, output and forget 
gates), each with its own set of in- and outcoming weight-
ed connections and a nonlinear activation function. 

In control applications with strict requirements im-
posed on size, power consumption and speed, com-
pact implementations of control systems in dedicated 
hardware are required. Due to the ceaselessly increas-
ing density of Field Programmable Gate Arrays (FPGAs), 
along with their high degree of flexibility, they have 
become the technology of choice in a wide range of 
control applications [8]. However, NNs being tradition-
ally a software discipline, direct ports of themselves 
and their learning algorithms into hardware give dis-
appointing, often impractical results. Thus, algorithmic 
and architectural transformation techniques are crucial 
when porting neural networks into hardware [9]. 

In this work, we aim towards hardware-friendly imple-
mentation of LSTM with on-chip learning. This paper 
presents a strategy by which LSTM training is trans-
formed and adapted in a way that reduces overall ar-
chitectural complexity and allows hardware implemen-
tation with explicit exploitation of parallelism, avoiding 
mechanisms requiring complex circuitry. 

Moreover, our proposed implementation strategy ena-
bles an independent architectural design of network 
forward phase and learning phase, leaving wide design 
freedom in choosing the implementation approach for 
each phase.

The validity of our approach is confirmed by experiments 
presented in this paper, showing that our proposed ap-
proach, i.e. learning of LSTM with Simultaneous Pertur-
bation Stochastic Approximation (LSTM-SPSA), retains 
the ability of LSTM to learn sequences in data whilst de-
livering immense architectural benefits in terms of suit-
ability for hardware implementation.

The paper is organized as follows. The rest of Chapter 1 
briefs our mission statement and reviews related work. 
Chapter 2 explains the proposed transformation strat-
egy and motivates the search of an alternative algo-
rithm for LSTM learning. This search is laid out in Chap-
ter 3, which also explains the chosen algorithm and 
emphasizes the advantages and drawbacks of the new 
learning scheme. Chapter 4 explains and discusses our 
experiments and results. Chapter 5 provides the con-
clusion and guidelines for future work.

1.1 Mission statement 

In this work, we make the first attempt to transform 
LSTM and its learning rule to enable their efficient im-
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Figure 1: LSTM Memory Block: the memory cell with its 
constant error carousel (CEC) retains data over long in-
put sequences. The update, output and erasure of this 
data are controlled by input, output and forget gates, 
respectively. Image source: [7].
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plementation in dedicated hardware. At the time of 
writing, no account on research aiming at a hardware-
native implementation of LSTM and its learning rule 
has yet been published.

We seek for the optimal strategy for efficient hardware 
implementation of both LSTM forward pass and on-
chip learning. 

We stress the importance of early architectural trans-
formations upon porting software algorithms into ded-
icated hardware. We are led by the idea that an early, 
educated algorithm transformation will yield superior 
gains compared to a low-level, partial optimization of 
a design based on concepts unfit for dedicated hard-
ware.

Investing effort to review alternative implementation 
options is crucial ground work that enables early archi-
tectural decisions that maximize future design fitness.

1.2 Related work

In the last two decades, extensive experimental and 
theoretical research effort has been aimed towards 
optimal hardware realization of different NN types and 
learning algorithms [9,10,11,12]. 

Systolic arrays [13, ch.5], [14] and stream processing ar-
chitectures [15] minimize hardware idle-time and opti-
mize dataflow and hardware efficiency. However, these 
approaches put strong constraints on the kind of neural 
architectures they can be applied to [13]. Logarithmic 
multipliers [16,17] spare hardware resources needed 
to implement expensive multipliers. Such optimization 
techniques gain priority when the benefits of higher-
level algorithmic transformations have already been 
exploited. Limiting network weight levels to powers 
of two [18] replaces multipliers altogether with bitwise 
shifts. However, typical neural networks do not allow 
such modifications without significant performance 
loss. Cellular neural networks [19] and RAM-based NNs 
[9] are specifically designed with efficient hardware im-
plementation in mind. However, their implementation 
principles (and their learning algorithms, also typically 
suitable for hardware) cannot be arbitrarily transferred 
to other network architectures, rendering these imple-
mentation principles unsuitable for applications re-
quiring specific architectures. Perturbation algorithms 
and local learning algorithms [9] generalize well to dif-
ferent network architectures, and are well-suitable for 
hardware implementations. Perturbation algorithms 
do not put any assumptions on the neural network ar-
chitecture, which is particularly beneficial when they 
are applied to architecturally complex neural networks 
such as LSTM. 

Specifically for LSTM networks, no development on 
their architecture or their learning algorithm has yet 
been aimed at improving their suitability for hardware 
implementation. Improvements of LSTM are mainly 
focused towards improving their learning capac-
ity [20,21] or convergence [22]. Research has yet to be 
made towards making LSTM networks and their learn-
ing suitable for dedicated hardware.

2 Criteria for selecting the  
transformation approach

In our search for conceptual transformations to LSTM 
and its learning on the algorithmic level, alternatives 
that bring the following benefits are sought for:
· decoupling the implementation of forward and 

backward pass to reduce implementation com-
plexity, possibly without doubling the necessary 
hardware resources

· lowering the amount of expensive arithmetic op-
erations

· lowering the complexity of control circuitry
· lowering the data dependencies between differ-

ent algorithm parts (improving spatial locality)

To keep complexity of the hardware implementation 
at minimum, the implementation of on-chip learning 
should affect the implementation of the network’s for-
ward phase as little as possible. Ideally, the two phases 
should be completely decoupled, the only link between 
them being the data they both need in their operations 
(e.g. they both access the same memory storing net-
work weights). In such case, the design of each phase 
can be treated separately, giving the designer more 
flexibility when choosing design approaches for either 
of them. However, being based on backpropagation, 
the LSTM backward pass is in the same order of archi-
tectural complexity as the forward pass, thus complete 
separation of the two phases could mean doubling the 
amount of required hardware resources. This motivates 
an architectural design where parts of the hardware are 
used by both phases; but that complicates the imple-
mentation process significantly compared to the case 
where each phase is treated independently. Conse-
quently, we seek high-level transformations that allow 
the design of backward pass independently from the 
forward pass without a significant increase of the over-
all required hardware resources. 

As the first step, we systematically analyze the findings 
of our literature search laid out in the previous chapter 
with respect to our criteria. As LSTM’s advanced learn-
ing abilities stem from its architectural composition, we 
leave the neural network topology intact and focus on 
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augmenting the LSTM learning rule. We isolate hard-
ware-friendly learning algorithms that generalize well 
to different neural network topologies and satisfy our 
criteria in several points. In subsequent steps of our re-
search, these algorithms are analyzed in further depth. 

3 Selecting the alternative training 
algorithm for LSTM

There are in principle two classes of hardware-friendly 
training algorithms: a) variations of widely-used but 
complex training algorithms with some of their core 
mechanisms altered or replaced and b) training al-
gorithms that apply to hardware-friendly network ar-
chitectures and are thus, in concept, fit for hardware 
themselves [11].

Because LSTM networks are a traditional multilayer net-
work architecture and original LSTM training is based 
on backpropagation, it is best to look for algorithms 
close to its principles, focusing thus on the first class of 
learning algorithms. Their most successful representa-
tives rely on some variety of parameter perturbation.

The general idea of perturbation algorithms is to ob-
tain a direct estimate of the gradients by a slight ran-
dom perturbation of network parameters, using the 
forward pass to measure the resulting network error. 
These on-chip training techniques do not only elimi-
nate the complex backward pass but are also likely to 
be more robust to non-idealities occurring in hardware, 
such as a lowered numerical precision [9]. Mainly two 
variations exist: node perturbation and weight pertur-
bation. Examples of node perturbation algorithms are 
Madaline-3 and Madaline-2. 

We choose weight perturbation algorithms because of 
the lower complexity of their addressing and routing 
circuitry compared to node perturbation algorithms. 
Specifically, we look into two fully parallel versions of 
weight perturbation algorithms, namely Simultaneous 
Perturbation Stochastic Approximation (SPSA) [23] and 
Alopex [24]. Both are local training algorithms which 
determine weight updates using only locally available 
information and a global error signal. Both algorithms 
are closely related, but unlike SPSA, Alopex relies on 
the principles of simulated annealing, which adds com-
plexity to the calculation of each weight perturbation. 

In contrast, SPSA uses a simple random distribution 
function to perform weight perturbations and then 
updates all weights using the same absolute value 
of the update. Neither algorithm makes any assump-
tions as to the neural network topology, thus both are 

conceptually fit for direct generalization to LSTM net-
work architecture. Neither have yet been applied to 
the LSTM architecture, but have been demonstrated 
to successfully train simpler FFNNs and RNNs [24, 25, 
26], which motivates us to research their applicability 
for LSTM training. Because SPSA uses less parameters 
and computational steps to determine the update of 
each weight than Alopex, ultimately allowing a more 
streamlined hardware description, SPSA was selected 
as the algorithm of choice in this study. 

3.1 LSTM-SPSA: LSTM trained by Simultaneous 
Perturbation Stochastic Approximation

SPSA [23] is based on a low-complexity, highly efficient 
gradient approximation that relies on measurements 
of the objective function, not on the gradient itself. 
The gradient approximation is based on only two func-
tion measurements, regardless of the dimension of the 
gradient vector, which is especially important in the 
field of neural networks, where this dimension quickly 
reaches several thousands. The weight-update scheme 
of the SPSA learning algorithm is explained by the fol-
lowing equations:
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Here tw∆  and i
tw∆  denote the weight vector of a net-

work and its i-th element at the t-th iteration, respec-
tively, α is a positive constant and c is the magnitude 
of the perturbation. iw∆  represents the i-th element 
of the modifying vector.Wmax is the maximum value of 
a weight.  ts  and i

ts  denote a sign vector and its i-th 
element that is 1 or -1. The sign of i

ts  is determined 
randomly, with adherence to one of the recommended 
variable distributions. J(wt) denotes the criterion func-
tion, which is most frequently the Mean Square Error 
(MSE) between the network’s actual and desired out-
put. 

From Eqs. 1 and 2 we see that a) during weight update, 
the same absolute value is used to update all network 
weights and b) to compute this value, only two meas-
urements of the error function are required, one ob-
tained via forward pass with perturbed weights and 
one without perturbations. SPSA algorithm flowchart 
is shown in Figure 2. 
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Figure 2: Flowchart of Simultaneous Perturbation Sto-
chastic Approximation applied to Recurrent Neural 
Network Learning. Image source: [26].

The first advantage of SPSA over the original LSTM 
learning algorithm is simplification of the gradient esti-
mation, because of the substantial reduction the num-
ber of arithmetical operations needed for weight up-
dates. The second advantage, less obvious but equally 
important, is SPSA’s equal treatment of all weights, 
eliminating in this way the separate error backpropa-
gation paths (with different arithmetic expressions) re-
quired by different LSTM weight types, simplifying the 
algorithm routing circuitry significantly. 

This second advantage in simplicity could prove to be 
a disadvantage in learning performance. For example, 
error backpropagation paths (set of weighted connec-
tions) that lead into forget gates, could have entirely 
different update dynamics than those leading into in-
put gates. In original LSTM learning, this is accounted 
for; but not in SPSA. It is thus expected that SPSA algo-
rithm will take longer to converge than original LSTM 
learning rule, but the increased simplicity of hardware 
implementation could compensate this by increasing 
operation speeds and possibilities of parallelization. An 
added benefit is also a simpler, more easily maintain-
able hardware description code.

3.2 Improving Learning Performance of LSTM-SPSA

After initial experiments with LSTM-SPSA (on the 
benchmark presented in the following chapter), possi-
ble augmentations to the learning algorithm were ex-

plored to maximize learning performance. The under-
lying idea of our augmentation was that if presented 
with a more difficult task, the algorithm will also im-
prove on its basic task (minimize mean square error). 
For classification tasks such as ours, receiver operating 
characteristics curves (ROC) are better discriminative 
measures of classification performance than MSE [28]. 
Furthermore, the classification performance is in our 
experiments measured by AUC and AUC50 (area under 
ROC and ROC50 curve, respectively, presented briefly 
in the next chapter), [6], motivating the idea that the 
algorithm should also aim to maximize these scores. 

To challenge our learning algorithm with a more diffi-
cult optimization task, we extended the criterion func-
tion by adding the AUC and AUC50 score, getting two 
new criterion functions. In addition to bringing MSE 
towards zero, the algorithm thus also had to maximize 
(bring to value of 1) AUC or AUC50. The two enhanced 
criterion functions used were: 

 )1(*)( AUCyMSEwJ tAUC −+=  and

 )501(*)(50 AUCyMSEwJ tAUC −+=

using y as a scaling factor to tune the ratio between the 
MSE and AUC (or AUC50) in the score.

Because the AUC score can only be calculated at the 
end of a learning epoch, we needed to implement 
batch learning, applying cumulative weight updates at 
each learning epoch end. When using batch learning 
with the original criterion function, the performance 
of the learning algorithm did not change significant-
ly compared to online learning. When adding ROC or 
ROC50 momentum to the criterion function, learning 
improved only by a few %, not reaching statistical sig-
nificance. 

4 Experimental results

Replacing the learning algorithm considerably inter-
feres with the neural network’s native learning scheme. 
Thus, before actual hardware implementation, the ef-
fectiveness of SPSA in training of LSTM has to be ex-
perimentally verified. 

The most significant property of LSTM networks is their 
ability to retain temporal information in sequential in-
put data. Therefore, we must test the LSTM-SPSA com-
bination on a learning task that demands this ability. 
To allow for a back-to-back comparison with the origi-
nal implementation, our experiments were based on 
those described in [6]. We implemented SPSA learn-
ing for LSTM networks and applied LSTM-SPSA to the 
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SCOP 1.53 database, which is a standard, widely used 
sequence-classification benchmark. 

The preliminary experiments on a single SCOP 1.53 
dataset, described in [27], showed promising learning 
results, indicating that SPSA-trained LSTM networks 
are able to learn temporal information over extended 
lengths of sequences. 

For the main experiment, run on the complete SCOP 
1.53 benchmark, we used pure SPSA with the original 
criterion function on an LSTM NN architecture identi-
cal to the one described in [6]. We used online learn-
ing, meaning that weight updates were computed 
and applied at the end of each sequence presented 
to the network within a learning epoch. In the experi-
ment, the two SPSA learning parameters values used 

were c=0.0015 and 
 

32
c

a = . In the generation of SPSA 

perturbation matrix, a Bernoulli distribution was used, 
as one of the recommended, optimal distributions for 
SPSA perturbations [29].

Table 1 shows the performance of different algorithms 
applied to SCOP 1.53 benchmark, showing that LSTM 
NNs outperform traditional algorithms for protein se-
quence classification in terms of classification quality, 
speed or both [6]. The quality of a ranking of test set ex-
amples for each protein family is evaluated by the area 
under the ROC curve. Being a more discriminiative qual-
ity measure, the area under ROC50 is also used; this is the 
area under the ROC curve up to 50 false positives, essen-
tially rescaling the false positive rate of the ROC curve [6]. 
ROC and ROC50 scores for LSTM-SPSA show competitive 
learning performance of LSTM-SPSA towards other pro-
tein sequence classification algorithms. Because the for-
ward phases of LSTM and LSTM-SPSA are identical, their 
test times, (Table 1, column 3) when run on software, 
are equal. Results in the table confirm that after replac-
ing the original LSTM learning algorithm with SPSA, the 
learning ability of the LSTM NN architecture is preserved 
to a high degree. Because of the computational and ar-
chitectural advantages of SPSA, explained in chapter 3, 
this motivates the use of LSTM-SPSA in hardware imple-
mentations of solutions that require the unique learning 
abilities of LSTM NN architecture.

Table 1: Results of remote homology detection on the 
SCOP benchmark database. The second and third col-
umn report the average area under the receiver operat-
ing curve (‘ROC’) and the same value for maximally 50 
false positives (‘ROC50’). The fourth column reports the 
time required to classify 20 000 test protein sequenc-
es (equivalent to one genome) into one superfamily. 
Performance data for solutions other than LSTM-SPSA 
sourced from [6].

Method ROC ROC50 Time
PSI-BLAST 0.693 0.264 5.5 s
FPS 0.596 - 6800 s
SAM-T98 0.674 0.374 200 s
Fisher 0.887 0.250 > 200 s
Mismatch 0.872 0.400 380 s
Pairwise 0.896 0.464 > 700 s
SW 0.916 0.585 > 470 s
LA 0.923 0.661 550 h
Oligomer 0.919 0.508 2000 s
HMMSTR - 0.640 > 500 h
Mismatch-PSSM 0.980 0.794 > 500 h
SW-PSSM 0.982 0.904 > 620 h
LSTM 0.932 0.652 20 s
LSTM-SPSA 0.900 0.392 20 s

Figure 3 and Figure 4 show the total number of families 
for which a given algorithm exceeds a ROC or ROC50 
threshold, respectively. Because of the rescaling of false 
positives in ROC50 score, giving it a higher discrimina-
tive value, the difference in performance between 
LSTM and LSTM-SPSA is more evident in Figure 4. 

Figure 3: Comparison of homology detection methods 
for the SCOP 1.53 benchmark dataset. The total num-
ber of families for which a given method exceeds a ROC 
threshold is plotted. Performance data for solutions 
other than LSTM-SPSA sourced from [6].

Performance figures show that LSTM-SPSA exhibits 
competitive results compared to other protein classifi-
cation techniques and compares to the original learn-
ing algorithm. This confirms that LSTM-SPSA retains 
the ability of LSTM networks to learn long sequences 
in data and, due to its substantial architectural advan-
tages, that it is a viable scheme for implementing LSTM 
network abilities in dedicated hardware.

5 Conclusion 

The work presented in this paper is the first attempt in 
transforming LSTM and its learning rule with the aim of 
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improving its suitability for hardware implementation. 
Our transformation strategy is based on the premise 
that most gains can be achieved by high-level transfor-
mations of the algorithm on a conceptual level, which 
can mean completely replacing its vital parts with alter-
natives known to be suitable for hardware. 

In our particular case, we have refrained from a naive 
direct port of a LSTM learning algorithm from software 
to hardware platform, bound to give disappointing 
results. Instead, we have replaced LSTM’s backpropa-
gation-based learning algorithm with Simultaneous 
Perturbation Stochastic Approximation, which fits our 
criteria for suitability for hardware implementation.

Our experiments confirm that LSTM-SPSA retains its 
ability to learn patterns in sequential data, which is 
the main characteristic of the LSTM network architec-
ture. Due to promising results on a classification task, 
we expect that LSTM-SPSA could also demonstrate 
regression abilities. Our results show that LSTM-SPSA 
yields competitive results to the original learning algo-
rithm, while enabling a cleaner implementation, lower 
resource utilization, simpler logical circuitry and in-
creased parallelization of LSTM with on-chip learning. 

Our strategy yields a solution which enables the de-
signer to treat the forward phase and learning phase 
circuitry separately and to seek implementation strat-
egies for each independently, giving a broader set of 
possibilities. Moreover, as SPSA is significantly less com-
plex than the original algorithm, this decoupling does 
not bring a large increase of FPGA fabric consumption. 

We conclude that because of the ability of SPSA in 
training LSTM on sequential data and because of its 
substantial advantages in suitability for hardware im-

plementation, LSTM-SPSA is the recommended ap-
proach for dedicated hardware implementations of 
LSTM networks with on-chip learning. 

In our future work, the effects of precision loss due 
to fixed-point arithmetic used in hardware will be 
studied. Preliminary experiments show that different 
fixed-point scaling should be used for different parts 
of the NN. Regression abilities of LSTM-SPSA will be 
explored. An attempt will be made to improve LSTM-
SPSA learning either by using a modified SPSA which 
uses smoothed gradient or by using an adaptive learn-
ing rate. Independently from the learning phase, trans-
formation techniques for LSTM forward phase will be 
reviewed. 
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